A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni.

نویسندگان

  • Esther J Gaasbeek
  • Jaap A Wagenaar
  • Magalie R Guilhabert
  • Marc M S M Wösten
  • Jos P M van Putten
  • Linda van der Graaf-van Bloois
  • Craig T Parker
  • Fimme J van der Wal
چکیده

The species Campylobacter jejuni is considered naturally competent for DNA uptake and displays strong genetic diversity. Nevertheless, nonnaturally transformable strains and several relatively stable clonal lineages exist. In the present study, the molecular mechanism responsible for the nonnatural transformability of a subset of C. jejuni strains was investigated. Comparative genome hybridization indicated that C. jejuni Mu-like prophage integrated element 1 (CJIE1) was more abundant in nonnaturally transformable C. jejuni strains than in naturally transformable strains. Analysis of CJIE1 indicated the presence of dns (CJE0256), which is annotated as a gene encoding an extracellular DNase. DNase assays using a defined dns mutant and a dns-negative strain expressing Dns from a plasmid indicated that Dns is an endogenous DNase. The DNA-hydrolyzing activity directly correlated with the natural transformability of the knockout mutant and the dns-negative strain expressing Dns from a plasmid. Analysis of a broader set of strains indicated that the majority of nonnaturally transformable strains expressed DNase activity, while all naturally competent strains lacked this activity. The inhibition of natural transformation in C. jejuni via endogenous DNase activity may contribute to the formation of stable lineages in the C. jejuni population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural transformation of Campylobacter jejuni.

The species Campylobacter jejuni is naturally competent for DNA uptake; nevertheless, nonnaturally transformable strains do exist. For a subset of strains we previously showed that a periplasmic DNase, encoded by dns, inhibits natural transformation in C. jejuni. In the present study, genetic factors coding for DNase activity in the absence of dns were identified. DNA arrays indicated that nonn...

متن کامل

Comparative Genomic Analysis of Clinical Strains of Campylobacter jejuni from South Africa

BACKGROUND Campylobacter jejuni is a common cause of acute gastroenteritis and is also associated with the post-infectious neuropathies, Guillain-Barré and Miller Fisher syndromes. In the Cape Town area of South Africa, C. jejuni strains with Penner heat-stable (HS) serotype HS:41 have been observed to be overrepresented among cases of Guillain-Barré syndrome. The present study examined the gen...

متن کامل

DNA Sequence Heterogeneity of Campylobacter jejuni CJIE4 Prophages and Expression of Prophage Genes

Campylobacter jejuni carry temperate bacteriophages that can affect the biology or virulence of the host bacterium. Known effects include genomic rearrangements and resistance to DNA transformation. C. jejuni prophage CJIE1 shows sequence variability and variability in the content of morons. Homologs of the CJIE1 prophage enhance both adherence and invasion to cells in culture and increase the ...

متن کامل

Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221.

Analysis of the complete genomic sequence of Campylobacter jejuni strain RM1221 identified four large genomic elements, Campylobacter jejuni-integrated elements (CJIEs), that were absent from C. jejuni strain NCTC 11168. To further investigate the genomic diversity of Campylobacter, we conducted a comparative genomic analysis from a collection of 67 C. jejuni and 12 Campylobacter coli strains i...

متن کامل

Conjugative transfer of chromosomally encoded antibiotic resistance from Helicobacter pylori to Campylobacter jejuni.

Many strains of Helicobacter pylori are naturally competent for transformation and able to transfer chromosomal DNA among different isolates using a conjugation-like mechanism. In this study, we sought to determine whether H. pylori can transfer DNA into Campylobacter jejuni, a closely related species of the Campylobacterales group. To monitor the transfer, a chromosomally encoded streptomycin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 191 7  شماره 

صفحات  -

تاریخ انتشار 2009